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Magnetogasdynamic deflagration under the Chapman- 
Jouguet condition 
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An investigation is made into the propagation of a one-dimensional combustion 
wave, which consists of a flame front and a precursor shock wave which pass 
down a tube closed at one end, in the presence of a transverse magnetic field in 
the uridisturbed gas at  rest. The shock wave is assumed to be of sufficient strength 
to ionize completely the initially non-electrically-conducting gas and the condi- 
tions a t  the flame front are taken to satisfy the Chapman-Jouguet condition. 
Details of the solution are compared with the corresponding results for ordinary 
gasdynamic deflagration. 

1. Introduction 
The properties of combustion waves in non-ionized gases are fairly well under- 

stood, and it is commonly accepted that a steady-state model of the phenomena 
may be formed of a shock wave followed by a flame front a t  which exothermal 
energy is released. Since, however, ionization of a gas may occur at temperatures 
of the order of lO4degK it is possible that the shock wave may be sufficiently 
strong to ionize the gas, in which case the description of the flow downstream 
takes on a magnetogasdynamic aspect. In  virtually all the models of such gas- 
ionizing shock waves with a discontinuity of electrical conductivity u across 
them so far studied, an idealized situation has been envisaged in which u jumps 
from zero ahead to infinitely large values behind, so that the theory may be 
expected to be relevant only to those flows with an appropriate magnetic 
Reynolds number ahead of and behind the front very much less and greater than 
unity, respectively. 

In  a previous paper Helliwell (1963) has investigated two particular processes 
of combustion. It was first shown that the magnetogasdynamic analogue of the 
ChapmanJouguet condition is that the velocity of the burnt fluid particles 
relative to the flame front is equal to the magnetoacoustic speed in the products 
of combustion. This was followed by a detailed analysis of a steady magneto- 
gasdynamic detonation wave under this condition. The second problem analysed 
was that of a steady deflagration, with flame front and precursor shock wave 
moving down a tube closed at one end, under the influence of an external trans- 
verse magnetic field, thereby extending the earlier results of Adams & Pack 
(1959), for ordinary gasdynamic deflagrations, to themagnetogasdynamic r6gime. 
The analysis was carried out for a range of values of the shock speed and associ- 
ated flame speed, and almost all the features of ordinary gasdynamic deflagration 
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were found to be basically unaltered by magnetogasdynamic effects. In parti- 
cular it was noted that the attainment of the Chapman-Jouguet speed by the 
flame does not lead to conditions equivalent to those of a detonation wave. The 
states corresponding to shock speeds with flame speed exceeding the magneto- 
itcoustic speed relative to the burnt gas particles correspond to the magneto- 
gasdynamic analogue of what Courant & Friedrichs (1948) term ‘strong 
deflagrations’ and it has been argued that these have no physical import. The 
consequence of the arguments is that for such faster shocks, as the reaction in 
the flame proceeds, a position is reached at which the reaction is complete and 
the flow parameters take up values associated with the Chapman-Jouguet con- 
dition. The outcome of this is that the particle speed immediately behind the 
&me is no longer zero and a rarefaction wave, centred at the closed end, must 
exist in the burnt gases in order to reduce the burnt particle speed to zero at  this 
end. In  this paper the properties of a deflagration are discussed under these 
conditions. 

2. A model deflagration 
A one-dimensional model is considered which consists of the propagation, from 

the closed end of a tube, of a gas-ionizing shock wave across which the electrical 
conductivity jumps from g = 0 to = co followed by a flame front at which 
exothermal energy is released and across which the Chapman-Jouguet condition 
holds. Immediately behind the flame there exists a rarefaction wave by passage 
through which the burnt particles are brought to rest at  the closed end of the 
tube. Upstream of the shock wave, in the undisturbed gas, electric and magnetic 
fields may exist with mutually orthogonal components parallel to the wave fronts. 

The conservation equations for magnetogasdynamic shock waves and flame 
fronts are well established. For the model described above they lead to two 
systems of equations which have been presented as equations (12), (13), (14) and 
(15) of the earlier paper (Helliwell 1963); they are thus not repeated here. 
Indeed this investigation should be regarded as an extension of the work reported 
in that paper, in which will be found definition of the notation employed through- 
out the present study. A schematic picture of the model, together with an asso- 
ciated wave diagram, is shown in figure 1.  

The following remarks concerning the validity of the governing equations are 
appropriate. The exothermal energy Q per unit mass released a t  the flame front 
is supposed constant and the absorption of ionization energy at the shock wave is 
neglected. Whilst the high degree of ionization associated with a jump of con- 
ductivity from zero to infinity is unlikely to be consistent with the latter assump- 
tion, yet in this paper the jump should be regarded as a scale effect rather than 
a consequence of full ionization of the initially non-conducting gas. In  this case 
the neglect of the absorption of ionization energy is not unreasonable. 

The analysis is made under the further supposition that the deflagration 
propagates into a perfect gas at rest, and that throughout all transitions the gas 
remains perfect with uniform polytropic index. For additional simplicity con- 
siderations are also restricted to the case when the upstream electric field is 
absent, in which case the electric field is zero relative to the gas particles upstream 
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of the shock wave and the model becomes formally identical with a pure magneto- 
gasdynamic deflagration in which the initially undisturbed gas is already 
perfectly conducting. 

The calculation of the transition through the shock wave follows exactly as in 
the previous paper. However, the solution for the jump relations across the Aame 
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avc 

/ X 

I Y 

' I  +-- 
u; = o  

u = w  

front requires a somewhat different analysis since Chapman-Jouguet conditions 
are now to be satisfied here. It is found most convenient to solve first for the 
density ratio p2/p1. One obtains the quartic equation 

h5(p~/p~)4 + h&Z/Pl)3 + h3(p2 /p1)2  + h2(p2/p1) + hl = '7 (1) 

where h, = {(Y + l)/(r - 111 {a?/r + 4a2P1/Po1, 
h.2 = - m y +  l ) / Y H ~ 3 ( Y - -  1)+a2P1/Po+q), 
h3 = {3(Y2-Y-  l)/r(r- 1)1a2p1/Po+{(Yf l)/r(r- I ) 1 4 + 2 q ,  

h* = {2(2-Y) / (Y-  l)l~2Pl/~a~ 
h5 = - {@ -r)/rl "2Pl/Po. 
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Here a is the ratio of Alfvbn speed to the ordinary sound speed a. upstream of 
the fronts; q = &/at. Now it is known that across the flame front in a deflagration 
the density must fall, so that, in the present problem, p2/pl < 1. It is a simple 
matter to rearrange equation (1) as a quartic equation in (1 - p2/p1) and to see 
that only one positive root of this equation can exist. Hence there is a single 
positive root of equation (1) which is less than unity. Consequently the smallest 
positive root of equation (1) is the required solution. The flame speed and down- 
stream field variables are then obtained without difficulty from equations (19) 
of the earlier paper. 

It has been pointed out that, in order to reduce the speed of the products of 
combustion to rest at the closed end of the tube, a rarefaction wave must exist in 
the burnt gas in which the electrical conductivity is infinite. An analysis of 
one-dimensional simple waves in a perfect infiniteIy conducting gas in the 
presence of a transverse magnetic field has recently been carried out by 
Gundersen (1962). The solution is reduced to quadratures which are integrable 
in terms of elementary functions if y = S, a value appropriate to a simple ionized 
gas, and which will be chosen as the value of y in the subsequent calculations. 
Using Gundersen's results one finds that the speed of the wave at  any point in 
the burnt gas is (U* + C )  and thus it is seen that immediately behind the flame 
front the speed of the wave and flame front are equal. Hence, as in ordinary 
gasdynamic deflagration theory, the head of the rarefaction wave moves with 
the flame front. 

The additional property governing the behaviour of the simple wave in thc 
case when y = $ may be written 

t U *  - C3/P2 = const., 

where p is the local dimensional Alfv6n speed. The conditions at the end of the 
tube in region (3) behind the rarefaction wave are obtained immediately from 
this equation. One finds that, since U$ = 0,  the pressure ratio across the wave 
and the magnetoacoustic speed a t  the end of the tube are given respectively by 

P3/P2 = {(Cg/a2) ( T Z / ~ O )  I1 - $(a2'%!/cg) (70/Tz)lf - ( d a 2 )  (72 /70) )5 ,  

c3 = (c2/a2) (72/70) {c$ - t(a2uf/c;) (70/72)1% - a;} 

x (1 - &(a2u,*/ci) ( T ~ / T ~ ) } ~ .  

Finally the density ratio, temperature ratio and ratio of magnetic field strength 
across the wave are given by 

H:/H; = P3IP2 = (T3/T2)$ = (P31P2)t 

whilst in the absence of infinitely large currents, since the gas particles are at  
rest behind the wave, the electric field E$ is zero. 

3. Numerical analysis and discussion 
Since analytic solution of the relevant equations is not possible a direct 

numerical analysis has been made and the results presented graphically. 
Throughout, a value y = $ has been chosen and the calculations carried out for 
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values of the magnetic field parameter a2 = 0, 100, 500 and of the exothermal 
energy parameter q = 50,100, 500. The ranges of these parameters are the same 
as those used in the calculations of the associated model (Helliwelll963) in which 
the speed of the precursor shock is lower and Chapman-Jouguet conditions are 
not reached across the flame front. Here we recall that the values of a2 correspond 
to a range of magnetic field strength of order 0 < H,* < FiOOOG in a gas at 
atmospheric pressure and higher values at  higher pressures. The value 4 = 50 is 
that for a conventional explosive releasing about 1700cal/g in a gas at  atmo- 
spheric pressure and density 1 g/l, whilst q = 500 is a value to be associated 
with thermonuclear fusion in a more diffuse gas. 

The transition across the shock wave for higher values of shock speed is similar 
to that described in the paper just cited, and is therefore not discussed further. 
The details of the flame front and rarefaction wave are presented in figures 2-7. 
For completeness these figures show the solution for all shock speeds, the details 
for the lower values of v* and pre-Chapman-Jouguet conditions having been 
transcribed from figures 7-12 of the paper referred to above. It will be recalled 
that, for a shock wave to exist, v* 2 2/(1 -a2). As v* increases from this value 
a rarefaction wave behind the flame front is not called for until a value of v*( = v:) 
is reached such that Chapman-Jouguet conditions are just attained at the flame. 
The value of vF is clearly indicated in figures 2-7 by the position of the branch 
point on the various curves. Further each graph is terminated when the shock 
speed v*( = vg) equals the flame speed w* so that conditions equivalent to a steady 
detonation are reached. 

From figures 2-4 it  is observed that v$ increases with a2 and so also does 
v$. This is associated with the increase of v& with a2. However, although the 
shock speeds are substantially greater, it is noted that v; and v$ are reached 
over shorter ranges of shock speed as a2 increases. Increase of q tends to increase 
these ranges. The flame speed has an almost linear variation with the shock speed. 
Similar characteristics appear for all values of q. For increasing q, vz and v:, 
occur a t  progressively higher values of flame speed. However, for large exo- 
thermal energy release, the electromagnetic effects are considerably reduced. 
The magnetoacoustic speed immediately behind the flame front bears an almost 
linear relationship to the shock speed, whilst that behind the rarefaction wave 
is sensibly constant except for low values of a2, when a slight increase with shock 
velocity occurs. 

Consider next the density ratio (which is equal to the ratio of the magnetic 
field) across the flame and rarefaction wave as shown in figures 5-7. Immediately 
behind the flame these increase almost linearly with shock speed to the value 
associated with v* = v$. This final value decreases with increasing a2 and is 
always greater than unity. This is one of the few results that may be verified 
analytically : setting w* = v* one finds uz = v*( 1 - po/p2) and thus, since uz > 0,  
it  follows that p2/po > 1. This result also makes it clear that, as ug increases, the 
density ratio also increases. On the other hand, the density ratio at the closed 
end of the tube tends, with increase of shock speed, to a constant value which 
increases slightly with a2. Consequently the density ratio across the rarefaction 
wave decreases as a2 increases. 
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Figures 5-7 also show that the pressure behind the flame undergoes large 
changes for comparatively small changes of shock and flame speed. However, 
as with the density, these changes decrease with increase of a2, and the pressure 
when v* = vz also decreases with increase of a2. The pressure behind the rarefac- 
tion wave shows a decrease to a minimum (for larger values of a2) before 
increasing to the final value. 

The particle speeds are seen from figures 2-4 to be approximately proportional 
to the shock speed above the minimum. They are also approximately indepen- 
dent of a2 but increase almost linearly with p. In  the gasdynamic analogue of 
the present study, Adams & Pack (1959) have shown analytically that the 
particle speed ahead of the flame at v* = v z  is exactly twice its value a t  v* = vg, 
which is itself exactly equal to the value of the particle speed behind the flame 
at v* = us. It is noted that both results appear true to a high order of approxima- 
tion in the magnetogasdynamic case and it is conjectured that they hold exactly, 
although it has not proved possible to verify this as yet withouLprohibitive 
algebra. 

Finally, the electric fields behind the flame are shown in figures 5-7. They are 
of an induced nature and directly proportional to the product of the particle 
speed and density. The electric fields are thus considerably greater ahead of the 
flame than behind (cf. Helliwell 1963, figure 5). The fields decrease in strength 
with increasing a2 due primarily to a decrease in density, since the particle speed 
changes little with a2. The electric fields, however, increase with q, owing to 
increases in both density and particle speed. 

In  summary, it is noted that many of the characteristics of ordinary gas- 
dynamic combustion are still evident in the magnetogasdynamic case. In  
general, for given q, there exist higher wave speeds, lower pressures and densities 
and approximately unchanged particle speeds for increasing strengths of 
magnetic field. The transition through the v& point shows a discontinuity in the 
rates of change with v* of certain parameters behind the flame, but there is no 
objection to this as the rarefaction wave immediately adjusts matters so that 
there is a smooth transition in the gas properties at  the closed end of the tube. 

The research reported in this paper was supported in part by the United States 
Air Force under Grant No. AF-EOAR-64-6 and monitored by the European 
Office, Office of Aerospace Research. 
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